Using an Embedded Processor for Efficient Deterministic Testing of Systems-on-a-Chip
نویسندگان
چکیده
If a system-on-a-chip (SOC) contains an embedded processor, this paper presents a novel approach for using the processor to aid in testing the other components of the SOC. The basic idea is that the tester loads a program along with compressed test data into the processor’s on-chip memory. The processor executes the program which decompresses the test data and applies it to scan chains in the other components of the SOC to test them. This approach both reduces the amount of data that must be stored on the tester and reduces the test time. Moreover, it enables at-speed scan shifting even with a slow tester (i.e., a tester whose maximum clock rate is slower than the SOC’s normal operating clock rate). A procedure is described for converting a set of test cubes (i.e., test vectors where unspecified inputs are left as X’s) into a compressed form. A program that can be run on an embedded processor is given for decompressing the test cubes and applying them to scan chains on the chip. Experimental results indicate significant amount of compression can be achieved.
منابع مشابه
Deterministic Test Vector Compression/Decompression for Systems-on-a-Chip Using an Embedded Processor
A novel approach for using an embedded processor to aid in deterministic testing of the other components of a system-on-a-chip (SOC) is presented. The tester loads a program along with compressed test data into the processor’s on-chip memory. The processor executes the program which decompresses the test data and applies it to scan chains in the other components of the SOC to test them. The pro...
متن کاملMatrix-based software test data decompression for systems-on-a-chip
This paper describes a new compression/decompression methodology for using an embedded processor to test the other components of a system-on-a-chip (SoC). The deterministic test vectors for each core are compressed using matrix-based operations that significantly reduce the amount of test data that needs to be stored on the tester. The compressed data is transferred from the tester to the proce...
متن کاملReliability and Performance Evaluation of Fault-aware Routing Methods for Network-on-Chip Architectures (RESEARCH NOTE)
Nowadays, faults and failures are increasing especially in complex systems such as Network-on-Chip (NoC) based Systems-on-a-Chip due to the increasing susceptibility and decreasing feature sizes. On the other hand, fault-tolerant routing algorithms have an evident effect on tolerating permanent faults and improving the reliability of a Network-on-Chip based system. This paper presents reliabili...
متن کاملEmbedded Memory Test Strategies and Repair
The demand of self-testing proportionally increases with memory size in System on Chip (SoC). SoC architecture normally occupies the majority of its area by memories. Due to increase in density of embedded memories, there is a need of self-testing mechanism in SoC design. Therefore, this research study focuses on this problem and introduces a smooth solution for self-testing. In the proposed m...
متن کاملA Low-Cost At-Speed BIST Architecture for Embedded Processor and SRAM Cores
We have introduced a low-cost at-speed BIST architecture that enables conventional microprocessors and DSP cores to test their functional blocks and embedded SRAMs in system-on-a-chip architectures using their existing hardware and software resources. To accommodate our proposed new test methodology, minor modifications should be applied to base processor within its test phase. That is, we modi...
متن کامل